INTERBASE

Versions 3.0 to 3.2 Release Notes

BORLAND

Disclaimer

Borland International, Inc. (henceforth, Borland) reserves the right to make changes

in specifications and other information contained in this publication without prior no-
tice. The reader should, in all cases, consult Borland to determine whether or not any
such changes have been made.

The terms and conditions governing the licensing of InterBase software consist solely
of those set forth in the written contracts between Borland and its customers. No rep-
resentation or other affirmation of fact contained in this publication including, but not
limited to, statements regarding capacity, response-time performance, suitability for
use, or performance of products described herein shall be deemed to be a warranty by
Borland for any purpose, or give rise to any liability by Borland whatsoever.

In no event shall Borland be liable for any incidental, indirect, special, or consequential
damages whatsoever (including but not limited to lost profits) arising out of or relating
to this publication or the information contained in it, even if Borland has been advised,
knew, or should have known of the possibility of such damages.

The software programs described in this document are confidential information and
proprietary products of Borland.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013.

© Copyright 1992 by Borland International, Inc. All Rights Reserved. InterBase, GDML,
and Pictor are trademarks of Borland International, Inc. All other trademarks are the
property of their respective owners.

Corporate Headquarters: Borland International Inc., 1800 Green Hills Road, P. O. Box
660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia, Denmark,
France, Germany, Italy, Japan, New Zealand, Singapore, Sweden, Taiwan, and United
Kingdom.

Software Version: V3.n

Current Printing: November 1992
Documentation Version: v3.3a1
Part Number: INTOO33WW21690

InterBase Versions 3.0 to 3.2 Release Notes

How to contact Borland

Borland offers a variety of services to answer your questions about InterBase:

Customer support Registered customers can call the InterBase customer
support line at 1-800-437-7367 with their questions
about InterBase. Also, general classes are available for
InterBase training and consultants are available for in-
dividual customer site needs.

Marketing information If you are not already an InterBase customer and want
information about this product, call the product infor-
mation line at 1-800-245-7376.

Documentation feedback We welcome your feedback about errors or missing
topics in the InterBase documentation.

November 1992 iii

interBase Versions 3.0 to 3.2 Release Notes

November 1992

InterBase Version 3.0 to 3.2 Release Notes

Table of Contents

INTRODUCTION 1
V3.2K Documentation Addendum. 1
V3.2 Documentation Addendum 4
Technical Bulletin., 5
V3.2H Documentation Addendum 6
V32HBugFixes 6
Additional Fixes. 7
VMS Support 7
Lock Table Expansion. 8
Installation Changes 8
Using Formson SGland DG 8
Changes to Interbase.Ada 9
V3.2F Documentation Addendum. 13
V32FBugFixes. 15
VERSION 3.2 RELEASE NOTES., .. 18
Overview 18
Version 3.2 Features. 18
New Language Support. 18
Gt o 18

ADA . . 18

gpre Additions 19
Specifying Cache Size, 19
Specifying Databases with start_transaction using Clause 20
Increased ANSI FORTRAN Compatibility 20

gbak Addition: blocking factor, 20
gdef Addition: set generator 20
gdef Change: UDF parameters 21
SQL Error Reporting Change. 21
SQL Security Changes 22
DSQL Addition: column aliases 22
Dynamic Accessto Arrays 23
Limbo Transaction ProcessingChange 26
Floating Point Numbers 26
Technical Bulletin Update 26
V32BugFixes 27
Current Restrictions. 34
VERSION 3.1 RELEASENOTES. 36
Overview 36
Version 3.1 Features. 36

November 1992 v

InterBase Version 3.0 to 3.2 Release Notes

New Platforms. e 36
New Call Interface Names 36
Proxy Account Support 37
How Proxy Files are Used in Remote Logins. 37

Array Processing Using get_slice and put_slice. 38
Array Elements in Database Queries 40
User Defined Functions for Blobsand Arrays. 41
BlobUDFs e 41

Array UDFs 43
Support for D_FLOAT Format 46
Support for HP-UX Cluster Configuration. 46
ALSYS ADA Support o oo 46
Apollo C++ Support 46
V3.1BugFixes 47
NIST SQL Compliance Bug Fixes. 47
General Bug Fixes. 4"
VERSION 3.0 RELEASENOTES. 19
OVETVIEW . o o o o e e e e e 49
Version 3.0 Features. 49
Version 2.n to Version 3.0 Compatibility 51
Changes to the On Disk Structure 51
The Bridge between Version 3.0 and Version2.n 51
The Apollo Bridge 53
TheSun Bridge 54

The VMS Bridge 54

Bridge Restrictions 54
Changes to InterBase Components 55
Changestoqli. 55
Changesto Forms. 55
Usingthe Mouse 56
Changesto SQL 57
Changesto DSQL 57
Index e 59

November 1992 vi

InterBase Versions 3.0 to 3.2 Release Notes

INTRODUCTION

This document includes all Version 3.n release notes and addenda distributed prior to
the current release. Current release notes are in a separate document.

V3.2K Documentation Addendum

The following changes apply to InterBase V3.2K released on the Data General
platform:

InterBase V3.2K has been certified to run on the Sun Server 600 Series and the
Sparcl0 under OS 4.1.2-3.

Journaling on VMS now works if enabled on databases larger than 64k.

Bug number 3951 has been fixed so that memory is managed correctly when pro-
cessing a trigger on a view on which additional processing was done prior to trigger
activation.

InterBase V3.2K now supports dynamic shared libraries which include dynamic
function lookup on the Data General platform. Since this affects the manner in
which user defined functions (UDFs) are handled, previously defined UDF's will
not work in V3.2K and must be rebuilt. For an example of how UDFs are built and
run in V3.2K, refer to make.udf located in /usr/interbase/examples.

In addition, linking your applications will require the following new options:

To use: Link with:

shared libraries -lgds

back end -lgds_b -1dl

pipe server -Bstatic -lgds -Bdynamic -1dl

November 1992 1

InterBase Versions 3.0 to 3.2 Release Notes

To link your applications on Data General AViiON running DG-UX Version 5.4 or
higher with the pipe server, use the following new options in the compiler
command to use the pipe server rather than the shared library:

Llonguage Link with:

C . -Bstatic -lgds -Bdynamic -1dl
FORTRAN /usr/interbase/lib/gds.a -1dl
C++ /usr/interbase/lib/gds.a -1dl

If you are linking your applications with pyxis, add the following options to thelD
command:

-1gds_pyxis -lcurses

e Toenable pyxis on Data General, you will need to perform the following:

— From within an mterm window, type the following command appropriate to

the shell:
Command Shell
setenv TERM vt100 cshell
TERM=vt100 Bourne or kshell
export term

— Select the OPTIONS panel within the window and set the mode to vt100.
— Use the keyboard mappings as displayed below or display them from the HELP

menu:
vi100/vt52 key | AViiON key
PF1 ALT-Insert
PF2 ALT-PgUp
PF3 ALT-Delete
PF4 ALT-PgDn

2 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

A problem has been identified on the Data General platform when using nested
UDFs. Building a shared UDF function library requires a workaround. If you have
nested UDFs, you use both the -Bsymbolic and -Bstatic switches in the 1d com-
mand in the order indicated in the example below:

ld -G -Bsymbolic udf.o -Bstatic -1lm -lc -o <func_lib_name.
Your function library will be linked correctly; however, you will receive a warning
message indicating, " _end is undefined in sbrk." This problem is currently being

investigated by Data General. If you do not use nested UDFs, this workaround is
not required.

November 1992 3

InterBase Versions 3.0 to 3.2 Release Notes

v3.2J Documentation Addendum

The following release notes and bug fixes apply to V3.2J:

A problem has been identified by HP with Apollo SR 10.4. Consequently, InterBase
V3.2J on Apollo experiences problems running under this operating system and
cannot be supported. HP will resolve this problem and provide users with a patch.
InterBase customer support will notify you when the patch is made available by
HP.

The following bug is corrected in V3.2J:

3855: Using the sorted by clause in a record selection expression with erase, then
performing a rollback no longer results in corrupted data or a corrupt database.

InterBase is available on 3.5 inch floppy diskettes on the IBM RS6000 platform. To
install InterBase from floppy diskettes, use the following restore command in-
stead of tar:

restcocre -f dev ridch

You then continue with the install procedure using the usual method.
The following problem is known to exist on the SGI platform:

Problem: User defined functions (UDFs; which make calls to routines in shared
libraries compile and run correctly from user applications, but attempting to access
the same UDFs in qli and gbak results in segmentation faults.

Solution: If you encounter this problem on SGI, relink qli and gbak with your
shared libraries.

The command to relink qli is:

cc ’usr/interbase lik glilib.a -lgds_s -lgdsf_s -lsun -o gl
There is a 31-character restriction on module_name for user defined functions and
filters. The module_name includes the path and the name of the module; for exam-

ple, rodule_name v/usr/gds ‘cd /kit_test/nfilter”. If module_name ex-
ceeds the 31-character limit, the following error message appears:

arithmetic exception, numeric overflow, or string truncation

To run InterBase on the IBM RS/6000 platform, AIX 3.2 is the minimum version
of the operating system supported. '

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

Technical Bulletin

The following problem has been reported on the InterBase HM-V3.2J kit on the HP
9000/300, 400 platform running HP-UX version 8:

On HP-UX systems configured to use long filenames, InterBase returns the following
message when attempting a remote connection:

connection rejected by remote interface

This problem results from the inetd daemon not being able to locate the TCP/IP server
executable. The entry in /etc/inetd.conf contains the path

'usr'interbase/bin 'gds_inet_server when the actual path and filename on disk is
"usr'interbase 'bin 'gds_inet_serve.

To resolve this problem, perform one of the following tasks:

* Modify the entry in , etc 'inetd.conf from:
gds_db stream tcp nowait root usri/interbase/bin/gds_inet_server gds_inet_server

to:

gds_db stream tcp nowait root usr/interbase /bin/gds_inet_serve gds_inet_serve

* Or, move the executable to the long name by changing:

to:

November 1992 5

InterBase Versions 3.0 to 3.2 Release Notes

V3.2H Documentation Addendum

The following release notes and bug fixes apply to V3.2H:

V3.2H Bug Fixes

3368
3369
3388

3401
3435
3475
3503
3533
3595
3609
3610
3618
3628
3656
3664
3675
3687
3695
3698
3705
3714
3716
3723
3727

3732

3738
3743
3744

fred properly handles large computed fields.
(same description as 3368).

gpre properly handles a missing logical operator (=) in SQL where
clauses.

Optimization corrected when accessing RMS-indexed files.

Garbage collection for indexed nodes has been corrected.

UDF definitions appear before field definitions in an extracted .gd! file.
Records are not lost when a program does not include a finish statement.
DSQL field names may be up to 31 characters in length.

gbak converts floating point value -0 to 0.

Missing dates are displayed as blanks.

Invalid dates entered in a form are handled properly.

qli correctly handles repeated calls to UDF's.

gpre produces correct FORTRAN code on Sun.

Lock table is correctly mapped on expansion.

gbak -r no longer creates duplicate RDB$TRIGGER_MESSAGES.
RDBS$RUNTIME lists correctly on remote access.

Optimization corrected when accessing RMS-indexed files.

gstat * gdb no longer causes a VMS access violation.

The last record stored in an external relation is written out on a commit.
Optimization corrected when accessing RMS-indexed files.

show filters properly displays filters.

grst supports ODS-6 and ODS-7 databases.

The example program, dsql_datel.e, correctly displays strings.

The gbak -r option correctly restores databases containing generators
equal to 0.

The gds_inet_server detects partial data transfers and sends the
remainder of the message.

Dynamic array access works on Sparc platforms.
get_slice and put_slice support on_error.
Interbase.Ada supplies the correct data type for get_slice and put_slice.

November 1992

3749
3750
3756
3757

3761
3764

3766
3769

~1 =1
o

W W w
~1 =1 =1
(/]

-2
Qo

3782

3785

InterBase Versions 3.0 to 3.2 Release Notes

put_slice works correctly with remote connections.
gpre generates correct code for put_slice.
Triggers are executed in the order specified.

gpre reports correct length for variables of type CHAR when processing C
programs.

Optimization corrected when accessing RMS-indexed files.

“Record not found” is a legitimate status message when accessing RMS-
indexed files.

gbak correctly creates databases with reserves.

gpre generates correct ADA code for both compile_request and
compile_request2.

gpre produces correct FORTRAN code on Sun.

SCO UNIX platforms work correctly.

Security across platforms correctly handles different group IDs.
Embedded SQL query insertions into destination tables work correctly
with 3475. UDF definitions appear before field definitions in an extracted
.adl file.

gbak checks to see if RDBSRELATION_FIELD security classes are backed
up.

Additional Fixes

Reaching AST quota limits on VMS 5.4 now returns a bug check error. Users re-
ceiving this error should detach from InterBase to release their locks for other us-

ers.

Potential loss of lock downgrade request signals no longer occur.

gdef does not generate dollar signs ($, in DYN C++ code.

The ACL filter prints out universal privileges.

Index selectivity is used correctly by the optimizer.

VMS Support

InterBase V3.2H supports VMS 5.5.

November 1992 7

InterBase Versions 3.0 to 3.2 Release Notes

Lock Table Expansion

Problems with lock table expansion that occurred in V3.2F on Sun and Apollo no longer
occur in V3.2H. It is no longer necessary to force the lock manager to allocate a larger
lock table.

Installation Changes

The installation procedure for SCO has changed. See Installing and Running
InterBase on UNIX for these changes.

Using Forms on SGl and DG

If you are using pyxis in your program, the curses function leaves STDOUT ina
nonbuffered mode when exiting a form. To return the terminal to line buffer mode, you
must insert the following lines into your routine:

s.rnclude <stdio.h»>
char buf [BUFSIZ]:
setvbuf (stdout, buf, _ICLBF, EBUFSIZ);

For example, the following routine is used to return a terminal to line buffer mode:

sinclude <stdioc.h»>
sinclude <curses.h>
main ()

{

char buf {BUFSIZ];
int ans;

initscr ();

clear ();

wrefresh (stdscr);

endwin ();

setvbuf (stdout, buf, _IOLBF, BUFSIZ);

printf (“Do you want to commit the updates (Y/N): *);

ans = getchar();

)

8 November 1892

interBase Versions 3.0 to 3.2 Release Notes

If you are using Forms with gli, you may get a blank screen after you accept or reject
aform. To correct this, you exit qli. When you reenter Forms through qli, your updates
will be visible.

Changes to Interbase.Ada

The following changes have been made to Interbase.Ada to support gpre preprocessing
of ADA programs:

November 1992

If ablob is declared as text or the default subtype, for commands where gpre must
declare a buffer for a blob, gpre now declares the type as a character vector. If the
blob is declared as anything else, gpre now declares the type as a vector of byte
integers.

If a variable for fields is declared as type CHARACTER [n] SUB_TYPE FIXED,
where n>1, gpre declares the variables as vectors of byte integers. Characters de-
clared without SUB_TYPE FIXED will be declared by gpre astype STRING(1...n).
Only SUB_TYPE FIXED gets changed.

If a variable for fields is declared as type CHARACTER | 1], gpre declares the vari-
ables as CHARACTER not STRING (1...1).

If a vanable for fields is declared as type CHARACTER (1] SUB_TYPE FIXED,
gpre declares the variable as a byte integer.

The following parameters are now declared as ISC_USHORT (unsigned short)
rather than SHORT_INTEGER, since they must be picked up as unsigned short by
InterBase functions:
ATTACH_DATAEASE
f1le_lerngth
dpk_length
COMFPILE_REQUEST
blr_length
CCMPILE_REQUEST2
blr_length
CREATE_BLOB2
bpb_length
CREATE_DATABASE
file_length
dpb_length
dpb_type
DDL
msg_length

InterBase Versions 3.0 to 3.2 Release Notes

10

EVENT_BLOCK (RETURN value)

count
EVENT_COUNT
count
EVENT_WAIT
length
GET_SEGMENT
buffer_length
actual_length
GET_SLICE
sdl_length
parar_length
CFEN_EBLCR2

brb_length

PREPARE_TRANSACTIONZ

msg_length
PUT_SEGMENT
length
PUT_SLICE
sdl_length
param_length
QUEUVE_EVENTS
lergth
RECEIVE
msg_type
msg_length
SEND
msg_type
msg_length
START_AND_SEND
msg_type
msg_length
START_MULTIPLE
count
START_TRANSACTION
tpb_length
BLOB_INFO
msg_length
buffer_length
REQUEST_INFO
instantiation

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

msg_length
buffer_length
DATABASE_INFO
item_length
buffer_length
DSQL_EXECUTE_IMMEDIATE
command_length
DSQL_PREPARE
command_length
COMPILE_MAP
map_length
COMPILE_SUB_MAP
map_length
CEEATE_WINDCW
rname_length
width
height
MENU
menu_length
DRIVE_MENU
blr_length
title_length
terminator
entre=s_length
GET_ENTREE
entree_length
entree_end
PUT_ENTREE
entree_length

¢ Parameters to InterBase procedures and functions are now declared as generic
data types (ISC_SHORT, ISC_LONG) appropriate to ADA Implementor-specific
data types (SHORT_INTEGER, INTEGER).

November 1992 1

InterBase Versions 3.0 to 3.2 Release Notes

* Since gpre processed calls to low-level entry points as if they were high-level com-
mands, the prefix (isc) has been added to the calls to differentiate them from the
high-level commands:

ISC_CANCEL_BLOB
ISC_CLOSE_BLOB
ISC_COMMIT_TRANSACTION
ISC_CREATE_WINDOW
ISC_DELETE_WINDOW
ISC_EVENT_WAIT
ISC_GET_SEGMENT™
ISC_GET_SLICE
ISC_CPEN_BLOB
ISC_PREPARE_TRANSACTICN
ISC_PUT_SEGMENT™*
ISC_PUT_SLICE

* The type declared for buffer parameters for isc_get_segment and
isc_put_segment is SYSTEM.ADDRESS, so that a buffer may be of any data type
required.

12 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

V3.2F Documentation Addendum

The following release notes and bug fixes apply to V3.2F:

C++ support is available as a separately-priced InterBase item. Please contact your
sales representative for pricing and platform availability.

Open Windows support is now provided on Sun. Refer to the Installing and Run-
ning InterBase on Sun document for information.

In a qli query involving an aggregate (min, max, total, etc.), the default column
header is now the name of the aggregate.

UDFs now have a ten argument limit.

On HP-UX systems, remote events are unreliable. Local events are not affected.
This has been discovered to be an HP-UX operating system problem. We are cur-
rently consulting with HP to determine whether or not the kernel can be reconfig-
ured to eliminate the problem.

Remote events now work on the DG-UX V3.2F kit.

On DG-AViiON, the C++ SQL examples do not work because of an AT&T cfront
v2.1.1 compiler problem. The problem will be corrected in cfront v2.1.2.

On Motorola Delta and IMP kits, pyxis is not supported.

The total key length permitted for a compound index has been reduced to 202 char-
acters in V3.2F. This limitation is a result of bug #3645. gdef will now reject defi-
nitions for compound indexes longer than 202 characters. Indexes defined prior to
V3.2F may have values that exceed the new maximum. For these indexes, at-
tempts to rebuild the index or backup and restore the database will fail with the
following error message:

gds_Skeytoobig error,
-key size exceeds implementation restriction for 1index
«index_name>

If this error occurs, you should shorten the length of the fields involved in the index
to ensure that they meet the new limit or drop any unnecessary fields from the
compound index.

The name of the lock table on the Sun platform has been changed from:
/usr/interbase/gds.lockfile.<node_name>
to
/usr/interbase/gds.lock.<node_name>

This brings the Sun platform into line with InterBase naming conventions.

November 1992 13

InterBase Versions 3.0 to 3.2 Release Notes

14

The change should be transparent to all applications that link with either the -1gds
or -lgdslib linker options. However, any applications linked with the gds_b.a
library, via the -1gds_b linker option, must be relinked before they will work
with V3.2F. Attempts to use applications that have not been relinked will fail with
a “no permissions” error when they attempt to access the lock table.

All Sun and Apollo users should check the size of the lock table. In V3.2F,
to avoid problems with lock table expansion, most notably, failure of the
gds_lock_print -a command, InterBase provides a method to force the lock man-
ager to allocate a larger lock table.

All Sun users should check the current size of:
/usr/interbase/gds.lockfile <node_name>

Apollo users should check:
/sys/node_data/gds.lockfile4

If either of the files is larger than 32,768 bytes, create a larger lock table to avoid
problems with lock table expansion. To do so on Sun:

— Copy the lock_header_template in /usr/interbase to
‘usr/interbaselock_header

— Increase the SHMSIZE amount by 32,768 bytes or 32K It is recommended that
additional increases be in multiples of 32K.

To create a larger lock table on Apollo:

— Copy the lock_header_template in /interbase to
/interbase/lock_header

— Increase the SHMSIZE amount by 32,768 bytes or 32K. It is recommended that
additional increases be in multiples of 32K.

On all Sun platform installations, InterBase, by default, is installed on
thome/<server_name>. You cannot override the default by installing Inter-
Base in /usr without causing problems with the installation. However, if you
choose to install InterBase on the /usr partition, you must create the directory
/usr/IB before you run the installation process and then enter that directory
name during installation when asked:

This installation will create the directory tree
<directory _tree> under the root directory most
appropriate for your installation.Enter the root
directory you wish to use [home/server_name>]:

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

* In V3.2F, to link your application on DG-AViiON running DG-UX Version 5.4 or
higher with the shared access method library, add the following options to the 1d
command:

-lgdslib -1gdsflib

If you are linking your application with pyxis, add the following options to the 1d
command:

-lgdslib -lgdsflib -1lgds_pyxis

* On the Apollo DN10000 AP_3.2F kit, you may not get the correct DSQL results
with FORTRAN if you are using the 10.5 version of the FORTRAN compiler. To
avoid this problem, you should run the compiler using the -dba option.

V3.2F Bug Fixes

648

735
921
2403
3404
3414

3418

3434
3438
3496
3505
3514

3518
3521

3524
3531

3535

modify trigger on views with computed fields no longer gets a MOV_move
conversion error.

See bug 648.

gds_8$decode_date now correctly stores the day of the week.

See bugs 735 and 648.

SQL select containing “running count” now works correctly in gli.

InterBase no longer gets an access violation when updating a view with a
computed field.

Storing and modifying a record in the same transaction, so it violates a
unique index, no longer causes the record to disappear.

qli now displays array index information.

select on a unique descending index now displays all records.

InterBase now uses substantially fewer locks for events under VAX/VMS.
See bug 3438.

Defining a relation in qli using based_on no longer results in a
segmentation violation from buffer overflow.

gfix handling of limbo transactions has substantially improved.
“based_on <field_reference>" in a gqli procedure now works in nested
procedures and begin-end blocks.

qli now allows using array fields as arguments to UDFs.

The RDB$_DESCRIPTION field is now properly stored as a subtype 1
(text).

See bug 921.

November 1992 15

InterBase Versions 3.0 to 3.2 Release Notes

3539
3548
3553
3555

3556

3558
3562

3566
3567

3597
3599
3624

3609
3611
3610
3617

3626
3630

16

gdef now extracts the correct definition of a UDF with blob arguments.
See bug 3531.
A segmentation fault after finishing one of two databases no longer occurs.

A large volume of stores via qli script no longer causes the
gds_inet_server to fail.

On a DEC Ultrix machine with a blob filter of subtype 0 to subtype text now
works correctly.

See 3555

Events now work correctly on multi-hop connection (e.g., gds_inet_server
to gds_server).

Asynchronous events on the VAX now work correctly and consistently.

Event programs that post events before listening for them now work
correctly.

Multi-RDB database programs now work correctly.

The qli define relation, based on a non-existent relation, now returns an
error.

The nested for construct is now handled correctly by qli.

Events are handled properly when a remote database is finished and
rereadied.

gbak and gdef now create databases with default protection of 666.
Memory usage growth no longer occurs when using UDFs.

Nulls are no longer allowed in a unique index.

In pyxis, access rights are now maintained when one user switches (su) to
another user.

gbak -restore now works correctly with generators and no longer runs out
of memory.

gconv now returns an error if missing “end of blob marker” from data file.
gconv now handles blobs correctly on non-Apollo machines.

gpre now generates legal initialization of BLR values for Apollo
FORTRAN compilers.

Missing value DATE (i.e. 17-Nov-1858) is now displayed correctly.
See bug 3592.
Invalid date no longer causes forms to hang.

An RSE that queries for a date_fld = “01/01/00” now selects the correct
records.

Remote security now works correctly.
Read/write now guaranteed to complete with SunOS.

November 1882

3633

3637
3640
3641
3643
3645

3647

3651
3658

3678
3697
3699
3709

InterBase Versions 3.0 to 3.2 Release Notes

Event counts are now incrementing correctly when multiple events are
posted within the same transaction.

VMS navigational equality queries now return the correct records.

gdef -dyn now supports C++ code generation via a -cxx switch.

gpre no longer converts dollar signs ($) to spaces in C++ code.

&ds.hxx for C++ now has the correct prototype for isc_create_database.

Compound index keys no longer cause “keytoobig errors” or segmentation
faults for valid indexes.

gbak now supports more than 1032 fields in a single relation when backing
up databases.

qli no longer truncates exponents when printing double float quantities.

Conversion errors no longer permit duplicate records to be stored in unique
indexes.

Array references in C++ RSEs are now 0 based, not 1 based.

On DGUX, remote NFS databases are now being accessed correctly.
See bug 648.

Field-level security now works.

November 1992 17

InterBase Versions 3.0 to 3.2 Release Notes

VERSION 3.2 RELEASE NOTES

Overview

This document describes changes that have occurred since the InterBase Version 3.1
release:

e New features for InterBase Version 3.2, including new language support
e Software restrictions and suggested workarounds, when available

e Bug fixes

Documentation corrections and clarifications are in the V3.2 Documentation Correc-
tions document.

Version 3.2 Features

New Language Support

C++

Saber C++, Version 1.02 is available on the Sun/3 and Sun’/4 and on Apollo HP-UX.

ADA

Verdix ADA, Version 3.0 is available on the Sun/3. (Telesoft ADA is no longer support-
ed.

18 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

gpre Additions

Speciftying Cache Size

For programs that use many databases but access or change only one or a few relations
in some of the databases, a smaller cache size can be used for those databases. For
programs that access or change many records in many databases, performance may be
better with a cache size greater than the default for those databases.

You can specify the database cache size count (i.e., the total number of buffers) when
opening existing databases with the gpre ready statement or the OSRI
isc_attach_database call. The syntax is:

FEADY database-specs [DEFAULT CACHKE n [BUFFERS))

[on-error clause)

database-:id [CACHE n [BUFFERS3]]

where n is an integer. The minimum number of buffers (n) is 10 and the maximum
depends on the maximum allowed on your particular system. If you specify a cache for
a database, that cache size applies only to that database. If you specify a default cache,
that cache size applies to all databases listed in the ready without their own specific
caches. If you do not specify a cache count for a particular database, the default cache
count of 75 is used.

For example,

READY DEl.GDE CACHE 280, DBZ2.GDB
opens DB1 with 80 buffers and opens DB2 with the default of 75 buffers

READY DB1.GDE, DB2.GDB CACHE 50 BUFFERS, DB2.GDB DEFAULT CACHE 32
opens DB1 and DB3 with the new default of 80 buffers and opens DB2 with 50
buffers.

READY DEFAULT CACHE 50 BUFFERS
opens all known databases with the new default of 50 buffers.

Each single-user attachment maintains the specified cache size as long as its
attachment is active. Attachments through a server maintain the specified cache size
as long as there are any server attachments to the database. If a database is already
attached through a multi-client server, an increase in cache size which results from a
new attachment will persist until all the attachments end. A decrease in cache size will
not affect databases that are already attached through a server.

November 1992 19

InterBase Versions 3.0 to 3.2 Release Notes

Specifying Databases with start_transaction using Clause

You can list databases with the new using clause in the start_transaction
statement. The database handles listed in the using clause identify only the databases
to be affected by this transaction. Using allows a multi-database program to start
transactions against a subset of its databases. In contrast to the reserving clause,
which restricts the database relations that the transaction can access or modify, the
using clause limits the databases involved in a transaction. The using and reserving
clauses are mutually exclusive. The syntax of start_transaction, with the new using
clause is:

START_TRANSACTION (transaction-handle)
[CONCURRENCY | CONSISTENCY] |
[WAIT | NOWAIT] |
[READ_WRITE | READ_ONLY] |

[on-error clause]

General information about start_transaction begins on page 4-102 of the
Programmer’s Reference.

Increased ANSI FORTRAN Compatibility

gpre will correctly handle the " delimiter for inline comments in FORTRAN programs
on all platforms (i.e., VMS, Apollo, SUN/3, SUN/4, SUN/Sparc, HP, and SGI).

gbak Addition: blocking factor

A new gbak switch, -factor, has been added to allow you to control the blocking factor
when you back up a database to tape. This switch, which can be abbreviated as -fa, in-
creases the speed of the backup and allows more data to fit on the tape. You do not need
to specify the -factor switch when restoring a database; InterBase automatically in-
terprets the blocked data.

gdef Addition: set generator

The default initial value of a generator is 0. The following gdef syntax allows you to
set the starting value of a generator. The starting value can be zero, a negative integer,
or a positive integer. (The maximum and minimum values are equal to the limit on the
size of a generator.)

20 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

SET GENERATOR <generator name> [TO] <linteger»>

The next value generated will equal the new value plus one.

This syntax can only be used in gdef and you must have write privilege for the system
relation, RDB§GENERATORS; you cannot set the starting value of a generator in qli.

gdef Change: UDF parameters

In Version 3.2 up to ten parameters can be used with UDFs; gdef will return an error
if you attempt to define more than ten parameters.

NOTE

If the UDF returns a blob, only 9 parameters are allowed.

The following rules apply to UDF parameter passing:
* All calling parameters are passed by reference.

* Numerics ‘short, long, float, and double) can be returned by value or by reference.
Shorts and longs are returned as longs, and floats and doubles are returned as dou-
bles.

* UDFs cannot return arrays.

* Arrays and blobs are passed as references to array’blob UDF structures.

SQL Error Reporting Change

A new function, isc_print_sqlerr prints the SQLCODE, an SQL error message, and
the InterBase error message if the status vector indicates that there is a relevant mes-
sage. The SQL messages are stored in the message database under their SQLCODE
numbers. The syntax of the isc_print_sqlerr is:

isc_print_sqglerr (sqlcode, status_vector)
short sglcode;
int *status_vector;

This function was added because setting an SQLCODE in embedded SQL applications
does not always set a corresponding status vector value, which is used by
isc_print_status to display a message.

November. 1992 21

InterBase Versions 3.0 to 3.2 Release Notes

Another new function, isc_sql_interprete has been added to Version 3.2. This
function retrieves an SQL error message into a user-supplied buffer. (A buffer length
of 128 should be sufficient to hold the message.) This will allow programmers to build
error display routines. This syntax of isc_sql_interprete is:

isc_sqgl_interprete (sglcode, buffer, length)
short sglcode;
text *buffer;
short buffer_length;

In addition, when the status vector element of a isc_print_status is 0 (indicating that
no failure occurred), instead of displaying the message, “message text not found”, the
message, “Success” will be displayed.

SQL Security Changes

Field-level update privilege has been added to the grant statement of DSQL. This
allows restricting users to updating or referencing only certain fields in a relation.

insert and update privileges for a relation no longer require select access. This
change also applies to access control lists. When a field in a relation is referenced,
InterBase checks to see if it is part of a store or a modify. If it is, insert or update
privilege is required for both the field and its relation; otherwise, select is required for
the field and its relation.

DSQL Addition: column aliases

You can enter a column alias token immediately following the selected field or
expression in dynamic SQL queries. This column alias token will be returned as a
string in the SQL name field of the SQL var. The column alias cannot have commas or
quotation marks surrounding it, nor can it have any blanks in it. If an expression is
used, v column name is returned, and if a field is used, the name of the field is
returned. For example:

select num, 2.2*weight weight_kg from p

returns a list of weights defined by the expression “2.2*weight” with each selected
expression having the column alias “weight_kg”.

22 . November 1992

InterBase Versions 3.0 to 3.2 Release Notes

Dynamic Access to Arrays

Arrays in Version 3.1 could be accessed from 3GLs either automatically (with a simple
array reference) or manually (with get_slice/put_slice), neither of which is
appropriate for dynamic access. The following information describes a properly-layered
library of functions to provide runtime access to arrays. (There is no preprocessor
support for these calls.)

The central structure in the library is an array descriptor, which is used to describe an
array or an array slice. The descriptor can be initialized by one of four methods:

* By the function isc_array_lookup_desc -- this function does a metadata access to
get the data type, length, scale, and dimension for the named field and relation.
The field_name and relation_name may be either null-terminated or blank-termi-
nated.

* By the function isc_array_lookup_bounds -- this function is similar to
isc_array_lookup_desc, but also fetches the array bounds as defined in
RDBS$FIELD_DIMENSIONS. The bounds information is not required for other
functions in the library, but may be useful to the application.

* By the function isc_array_set_desc -- this function initializes the descriptor from
the function parameters, without reference to the database metadata. The data
type is given as a SQL data type number (i.e., SQL_TEXT is 452). Null indicator
values (SQL_TEXT +1) are ignored and treated as 452.

* Directly by the program -- the array_desc_dtype is expressed as a BLR data type
and array_desc_field_name and array_desc_relation_name must be null terminat-
ed.

The following fields and functions are used in the structure shown below:

The structure field, ARRAY_DESC_FLAGS controls whether the slice is fetched in
column major or row major order. The three descriptor initialing routines set the field
to the default setting (appropriate to the C language). If the array is to be fetched for
FORTRAN, the field is changed by the host program to the value 1.

The function isc_array_gen_sdl can be used to generate slice description language
(SDL) for use with the actual isc_get_slice or isc_put_slice calls. The function is
most useful for avoiding SDL generation inside a loop.

The function isc_array_get_slice is used to fetch an array slice. The bounds
information in the array descriptor defines the slice to be fetched. Note: The function
interprets the slice bounds in the same dimension space as the original array. In gpre
array support, bounds are automatically adjusted to language specific ranges (in C, all
arrayshave zero asa lower bound; in FORTRAN, all arrays have one as a lower bound).
In the function isc_array_get_slice, the parameter SLICE_LENGTH is used to

November 1992 23

InterBase Versions 3.0 to 3.2 Release Notes

specify the size of the resultant slice (in bytes), and is returned as the number of
significant bytes fetched.

The function isc_array_put_slice is analogous to isc_array_get_slice, but runs in
the other direction. isc_array_put_slice also returns an array ID.

typedef struct {
short array_bound_lower;
short array_bound_upper;
} ARRAY_BOUND;

typedef struct
unsigned char array_desc_dtype;
signed char array_desc_scale;
unsigrned short array_desc_length;

char array_desc_field_name [32];
char array_desc_relation_nams [22];
short array_desc_dimersions;

short array_desc_flags:

ARFAY_EOUND array_desc_bourds [1l&];

} ARRAY_DESC;

sdefine ARRAY_DESC_COLUMN_MAJOR 1 * Set for FORTRAN *

isc_array_lockup_desc (status, db_harndle, trans_handle,
relation_riame, field_name, desc);

long *status;

long *db_handle;
long *trans_handle;
char *relation_name;
char *field_name;
ARPAY_DESC *desc;

isc_array_lookup_bounds (status, db_handle, trans_handle,
relation_name, field_name, desc);

long *status;

long *db_handle;
long *trans_handle;
char *relation_name;
char *field_name;
ARRAY_DESC *desc;

24 November 1992

isc_array_set_desc (status,

InterBase Versions 3.0 to 3.2 Release Notes

relation_name, field_name,

sql_dtype, sql_length, dimensions, desc);
long *status;
char *relation_name;
char *field_name;
short *sql_dtype;
short *sql_length;
short *dimensions;
ARRAY_DESC *desc;
l1sc_array_gen_sdl (status, desc, sdl_buffer_lergth,
sdl_buffer, sdl_length);
lonag *status;
ARRAY_DESC *desc;
shert *sdl_bkuffer_length;
char *sdl_buffer;
short *sdl_length;

lsc_array_get_slice

array_id, desc,
long

long

long

GDS_QUAD
ARRAY_DESC
void

long

lsc_array_put_slice

array_id, desc,
long

long

long

GDS_QUAD
ARRAY_DESC
void

long

November 1992

de_

A
S13Te_

(status, trans_hardl=,
array,
*status;

*db_handle;
*trans_handle;
*array_id;

*desc;

*array;
*slice_length;
(status, db_handle, trans_handle,
array, slice_length ;
*status;

*db_handle;
*trans_handle;
*array_id;

*desc;

*array;

*slice_length;

25

InterBase Versions 3.0 to 3.2 Release Notes

Limbo Transaction Processing Change

In Version 3.1, when a multi-client server lost a connection (i.e., detected a
communication error) to a client performing a two-phase commit, it terminated the
database attachment without releasing any limbo transaction locks. This caused other
users to become suspended if they tried to modify records updated by the limbo
transaction. (Usually, a gds_$deadlock error code was returned with a minor code of
gds_S$trainlim.) :

In Version 3.2, isc_detach_database releases the locks on limbo transactions. Releas-
ing the lock still leaves the transaction in a state of “limbo”; the normal procedures and
tools for handling limbo transactions must be used. Refer to the Database Operations
manual, pages 3-8 for information on limbo transactions.

Floating Point Numbers

In Version 3.2, floating point numbers are more accurate. Although accuracy is
improved, equality comparisons between floating points are not recommended due to
the nature of floating points. For example, instead of this comparison:

1f variableA = 1224%6.12344°¢

a comparison that includes an error factor should be used:

if ‘variableA - 1234%56.123445 - C.20000%

Technical Bulletin Update

The architectural limitation on the number of transactions noted in the Technical
Bulletin dated April 11,1991 has been lifted. While you should continue to periodically
sweep your database, failure to do so will no longer risk losing data due to an excessive
number of transactions.

26 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

V3.2 Bug Fixes

The following bugs have been fixed in Version 3.2. Bug fixes that improve NIST SQL
compliance are marked.

Bug # NIST
224

363
543

563
685
691
703
706
740

756

1017 x
1503 x

1540 X
1545

November 1992

Bug Fix

D ipti

Pressing ~Z within the CON> prompt no longer causes qli to exit.
Union is now supported in DSQL.

Appropriate message is now returned when deleting records from an
external file within qli.

Entering a query_header clause in a field definition in qli now
returns the proper error message.

A syntax error in defining an index no longer results in an incorrect
index definition.

A form will only be used in a modify if a form is explicitly named or
when forms are set and no fields are listed in the modify:.

Set Form and print... on <file_name> now directs the output to the
designated file.

Set Form and list... on <file_name> now directs the output to the
designated file.

After an internal gds consistency error, the correct error message is
now displayed in gli: “can’t continue after bugcheck”.

When accessing a relation by db_key in C, gpre now assumes that
the host language variable which currently contains or is about to
receive a db_key is long enough to hold the key.

gpre and FORTRAN now handle date copying correctly.

View deletion performance has been improved.

qli now recognizes Sun pathnames starting with ‘~’.

Conversion errors no longer occur when using floats with edit strings
containing “$”.

Data typing of DSQL expressions has been improved (expressions will
not automatically become varying (80])).

Testing the indicator variable after set function on an empty table no
longer gives an incorrect value. It is now <0.

A subquery that selects no records no longer returns an error
message, but evaluates the comparison operator to unknown.

count on an empty table now returns 0, instead of no value.
Using fred now requires qli, data definition, or gpre to be licensed.

27

InterBase Versions 3.0 to 3.2 Release Notes

1558

1598

1608

1626

1700

2540

2881

2897
2900

2931
2946

2959

2968

2994

3007

3026

3030
3032

3035

3042

28

FORTRAN implicit none now declares and uses variable GDS_$I as
the index variable in data statements.

include sqlca and database statements can both be included

in a program.

gpre now detects a semi-colon at the end of a commit, rollback, save,
or prepare statement within a host language if statement.

A security class not allowing modifications to data definition now does
not allow any changes to global fields either.

Edit strings requiring more precision than available by the data
type/value no longer print as **, but print with the amount of
precision available.

Zero-length item descriptions (in brackets) are correctly retained by
gdef.

Subgqueries that select expressions of aggregates work correctly in
gpre.

store using <blob field> = edit in qli works correctly.

Context variable with same name as blob name works correctly in
gpre.

Failed database attaches now report the correct database name.

For tasks that gdef cannot complete (due to missing info), gdef will
ignore/clean up any starting steps it took.

Views that contain a union and computed expressions are now
retrieved correctly by DSQL.

Maximum fill string length has been expanded to 255 characters
(from ~30).

The gpre Pascal preprocessor correctly handles multiple databases in
the gds_$start_transaction argument list.

gdef now handles interrelationships so interdependent objects can be
manipulated (e.g., delete trigger and then delete its relation).

qli commands longer than 255 characters now produce an error
message.

Support for old “gds.authorize” licenses is no longer available in V3.2,
Aborting from an editor when storing a blob now marks the blob as
missing.

Defining a relation or view and then deleting it within the same
execution of gdef is no longer permitted.

gpre now generates correct code when a host variable specified as a
target of SQL fetch is an array.

November 1992

3044

3051
3072

3113
3121
3130

3148
3178

3194

3198

3200

3220
3223

3230

3239

3255

3256

3257

3259

3260
3261
3262

3263

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

Asking for a very large number of buffers at database attachment now
works correctly.

gdef -e now extracts views from V3.0 databases in the correct order.

Report writer now correctly formats output when a query contains a
three-way join where one of the joins is a self join.

Remote events now work correctly.
gpre now processes Pascal comments correctly.

An error message is now displayed when the user attempts to define
multiple triggers in a single define trigger statement in gdef.

In qli, a repeat store using a form with a blob now works correctly.

In a program which does only dynamic SQL, when a blank database
is found, no automatic attach database will be generated.

In gdef, deleting a relation with a computed field now works
correctly.

edit command now works correctly when remotely logging on to an
Apollo.

The output produced by a show relations executed while logged onto
an Apollo using a VT100 or emulator is now correctly displayed.

gpre now parses distinct in a subquery.

The DECnet pipe server is no longer killed when user finishes db1
and then readies db2 (“broken pipe message” will not appear).

In large databases (> 200M) on Apollos, queries will no longer fail
with “reference to illegal address” message.

RDB$USER_NAME is now correctly maintained when going from a
TCP to an MBX server.

Using a syntactically incorrect create index command in the
full_dsql example now returns a syntax error, rather than crashing.

In gpre, lengths of CHAR and VARCHAR in declare table have
been adjusted so syntax errors do not occur.

In gpre, declaring a table that already exists now returns an error
message rather than crashing.

qli now correctly shows the database handle in the
show <db_handle>.indices command.

iscinstall now accepts non-default Ethernet ID.
The DSQL between clause now works correctly.

Low-level DSQL calls now work correctly with multiple databases
that have same object names, but different object definitions.

Character-special (“raw”) UNIX IO interface is now supported.

29

InterBase Versions 3.0 to 3.2 Release Notes

3264

3265

3267

3275

3276
3277

3279

3280

3282
3284
3286
3290
3291
3292

3293

3295

3299

3301

3303

3308
3309

3310

30

Remote TCP server now works correctly with events and does not
segmentation fault when running remote events.

Modifying a database with DYN now correctly defines triggers if the
DYN also contains a definition of the generator to be used by the '
trigger.

More than 100 events now work correctly on the Apollo and do not
produce an “Apollo-specific fault”.

<Field> EQ null or <field> NE null now works in gdef validation
clauses.

Pre-erase triggers on views now work correctly.

On VMS, gbak now creates versions of a gbak file, instead of writing
over existing backup.

Logging now works correctly if attaching more than one database in
qli.

Date edit strings in X(n) format now work correctly, instead of
occasionally causing qli to crash.

qli edit now brings up the correct number of commands in a window.
gbak -t no longer nulls out restored array data.

SQL union with group by now works correctly.

DSQL now handles multiple metadata changes correctly.

Aliases are now allowed in a group by clause in qli.

Licensing check stop message has been changed to report registration
hours as 9-5.

Installation procedure now correctly defines GDSSHR_TCP before
running gbak.

Unknown remote hosts on GDSSHR_TCP now work correctly.
Discarded pointer page referenced by index is now ignored.

DSQL TIME can now be cast as TEXT for input (but cannot use
blanks to separate date and time; must use slash, hyphen, comma, or
colon).

gfix -h interval defined in GDS_$INFO_SWEEP_INTERVAL now
survives gbak.

gbak now handles multidimensional arrays correctly.

dsql_$finish now works correctly and does not cause memory
growth of process.

qli unknown switches are ignored and will no longer cause qlito
terminate.

November 1992

3313

3314

3315
3316

3318
3319

3321
3322
3326
3330

3337
3338
3339

3340
3341
3343

3347

3348
3349

3351

3352
3353

3354

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

A quoted string entered as a query name now returns an error
message.

Missing value flags declared as text strings of length 1 now work
correctly and use “1” to indicate the missing value.
edit command in qli now works correctly with EMACS.

gdef -e now extracts all fields with system flags not equal to 1,
instead of only 0 and -1.

qli spawn now runs in parallel, not supervisor (blocking) mode.

Loading records from external relations via a procedure now works
correctly.

Stocks.gd!l in examples has been corrected and now matches restored
stocks.gbak.

gstat version number switch -z has been added.
gdef prints an error message for illegal syntax in trigger messages.

Generated DYN specifies index type (ascending/descending) when
needed and now creates indexes correctly.

gpre now correctly processes FORTRAN boolean operators.
qli now correctly processes UDFs that pass last parameter as NULL.

DSQL now returns an error message if you create a relation and
attempt to insert data before committing (no longer produces “can’t
find pointer page” message).

gdef -e now correctly extracts SQL security on SQL defined tables.
DSQL now correctly assigns SQL security to new tables.

Entry points for isc_encode_date and isc_print_blr have been
added to VMS gdsshr.exe.

qli print literal limit has been expanded to 255 characters and an
error message is displayed if more than 255 characters are used.

qli no longer drops chars when using print concatenation and UDFs.
On IBM RS/6000 gconf trim() function now correctly prints the
string it returns.

qli field position number is now assigned explicitly only when relation
is defined; if not specified, position number is “missing”.

In qli, show variable is now supported as well as show variables.
In gli, the parser now accepts only one data type definition in variable
declarations; an error message is displayed if more than one data type
is entered.

VMS TCP connect now checks getservport errno when establishing
outgoing TCP connection, producing a more specific error message.

31

InterBase Versions 3.0 to 3.2 Release Notes

3355
3357

3358
3359
3361

3364
3370

3373

3376

3378
3379

3389
3391

3394
3396
3397
3398

3402
3406

3410

3412

3413

3430
3431

32

Event names are no longer truncated at the first space encountered.

Undocumented upper limit in isc_event_block() has been removed,
allowing users to wait on more than 64 events.

qli now correctly sorts data when using UDFs.

DYN support has been added to modify database command.

gpre now correctly handles host variable references on the left side of
list quenes.

qli print command now correctly prints blank lines in blobs.

Individual slices of arrays with varying strings are now aligned
correctly on SPARCs.

gdef -dynamic now supports descriptions on define and modify
trigger statements.

qli now correctly compares date variables and date strings in sub-
queries.
gltj flush in batch mode on VMS now works correctly.

gpre now handles multiple database statements in FORTRAN
correctly.

Moving past the bottom of a form is now permitted in fred.

Blob handles are now correctly generated for ADA (no longer
generating gds_handle for blobs).

Error handling has been added to commit and rollback for SQL.
(same as 3280)

(same as 3339)

Querying newly-created tables in DSQL before commit now returns
an error message.

InterBase.a and InterBase.ada now correctly call dsql_prepare.

gpre now allows SQL indicator variables to be any valid host
language data type (including array elements).

Users are now permitted to manipulate data in a view if they have
read/write permission to the view, regardless of whether they have
access to the relation.

Corrected spelling error in DSQL_DECL_ERR message.

Commits in qli begin-end blocks now work correctly (no longer
cause “invalid transaction handles” error).

Relation names with spaces now work correctly.
isc_set_debug has been added to V3.2 kits.

November 1992

3432

3444
3445

3450
3451
3453
3454

3456

3458

3460

3466

3469

3470
3477
3478

3481
3483
3496
3501

3512

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

get_slice now works correctly with range bounds specified as host
language variables.

Port blocks that contain non-text data now work correctly on ADA.

Files are now extended by 64KB beyond the page being written pre-
vents database corruption from allocated but not formatted pages).

gpre C++ now correctly parses printf statements with \ in them.
(same as Bug 3223)
Post-store triggers on views now work correctly.

In dsql.ef example, baddress calls have been changed to
isc_baddress.

Expressions of aggregates now work correctly in DSQL.

gpre now correctly processes FORTRAN programs that use the
FORTRAN keyword save, but the transaction_handle
keyword must be used to save a named transaction.

gds.ins.ftn FORTRAN include file now compiles with -ff switch to
ftn.

Aborted gdef database creation now deletes secondary files of the
database and, if created, shadows.

gbak -r -k no longer restores any shadow metadata to the new
database.

Corrected the syntax error in help text for the insert statement.
In DSQL, expressions of parameters now work correctly.

Inputting a long in SQLDA to a short in the database or outputting a
long in the database to a short in SQLDA is now reported as a
conversion error.

Ultrix automounts now work correctly:.

(see Bug 3339)

Events on VMS no longer require excessive locks.

Incorrectly placed commas in reports now return an error message,
rather then segmentation faulting.

Indexed character fields now correctly retrieved for condition
missing.

33

InterBase Versions 3.0 to 3.2 Release Notes

Current Restrictions

The following restrictions apply for this release on all hardware platforms, except
where noted:

34

Equality comparisons between floating point data types and scaled integer or nu-
meric string data types may not produce the expected results. Some scaled decimal
numbers cannot be represented exactly in floating point, and some floating point
numbers have no exact scale decimal representation. Conversions between the two
types truncate repeating fractional portions. This is a particular problem when sin-
gle and double precision values are mixed in an equality comparison, because the
different amounts of truncation will cause apparently equal numbers to return a
value of not equal. To reduce the occurrence of this problem, when practical, you
should store numbers that will be used in equality comparisons as double rather
than single precision floating point.

Abort codes for triggers cannot be greater than 255. Version 2.n triggers with abort
codes greater than 255 will execute in Version 3.n, but the abort code that is re-
turned in the status vector will be the low-order byte of the defined trigger.

DSQL has a limit of 32K for the length of both queries and data.

If you copy a relation that includes a computed field, InterBase does not allow you
to delete either the new or the original relation due to dependency checking. To de-
lete the relation, first delete the computed field(s), then delete the relation.

For VMS only, if you have programs built under Version 2.n that use a
gds_8$dsql_finish call, you must relink these programs under Version 3.n. If you
do not relink, the behavior of the programs may be unpredictable.

In the Apollo multi-threaded server environment, running a program which ac-
cesses a view that has been previously deleted will cause an error.

Remote events via DECnet are supported only for VMS to VMS connections. If you
attempt a remote event via DECnet between VMS and Ultrix or between Ultrix
and Uitrix, you will see one of the following messages:

1,0 ERROR DURING “READ END-OF-FILE” OPERATION FOR FILE “DECNET
CCNNECTION"

I1/0 ERROR DURING “SYS$QIO/IOSREADVBLK" OPERATION FOR FILE
“DECNET CONNECTION"

SEGMENTATION FAULT

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

* Support for the bridge between InterBase Version 2.n and 3.n on the Apollo
DN10000 is no longer provided. If you are installing InterBase Version 3.2 on the
DN10000 and you have databases created in InterBase Version 2.n, you must back
up the databases before you install InterBase Version 3.2. On the Apollo Domain
DN3xxx and DN4xxx, support for the bridge between InterBase Version 2.n and
3.n is no longer provided.

* The C pause () function on Apollo suspends a process and all of its threads that
execute the pause. This prevents InterBase from downgrading locks that the
pause program holds and can cause the database to lock. If you encounter this
problem using InterBase on Apollo, you should purge your programs of pause
functions and use an alternative function. For example, in some cases, the pause
function can be replaced with an equivalent sleep function or you can write a rou-
tine which implements pause as sleep.

* Domain (Verdix) ADA programs that try to catch floating point exceptions may get
kernel errors that report unexpected signal faults. If you have this problem, call In-
terBase Customer Support.

* The Apollo DN10000 has not been certified to work with Apollo’'s Domain ADA
(Verdix:. If you encounter any difficulties using Apollo’s ADA with InterBase, con-
tact InterBase Customer Support.

* On InterBase Version 3.2 for the Sun SPARC, when running large numbers of da-
tabase-accessing programs which are linked against the pipe server (gds_a) on a
machine with limited memory, you may encounter failures resulting in segmenta-
tion violations or other errors. The workaround for this is to use the shared library
(gdslib), which will also improve performance.

* Ifyou are using VAX Ultrix with disked clients, you must obtain and install an
NFS File Locking patch from DEC before InterBase will run correctly. This patch
must be installed on both the disked client and the server. The patch includes these
files:

lockd
gfs_namei.o
gfs_sysquota.o
nfs_server.o
nfs_vnodeops.o
ufs_gnodeops.o
ufs_nemei.o
ufs_syscalls.o
vnodeops_gfs.o

November 1992 35

InterBase Versions 3.0 to 3.2 Release Notes

VERSION 3.1 RELEASE NOTES

Overview

This document describes changes that have occurred since the InterBase Version 3.0
release.

e New features for InterBase Version 3.1
e New InterBase platform support
e Software restrictions and suggested workarounds, when available

¢ Bug fixes

Version 3.1 Features

New Platforms

Platform support in InterBase Version 3.1 is provided for:

¢ AViiON RISC port running DG-UX Version 4.3

e Silicon Graphics port running IRIX Version 3.3

e IBM RS/6000 port running AIX Version 3.1

e HP 9000/400 ports running HP-UX Version 7.3 and SR10.3.

New Call Interface Names

To accommodate systems that do not allow dollar signs ($) in call names, InterBase
V3.1 now supports call entry points that begin with isc. You do not need to update pre-
vious call entry points that begin with gds_$ because InterBase will continue to sup-
port them, but it is recommended that you use the isc format for any new calls. For
example, either of the following calls will cancel an event:

gds_Scancel_events (status_vector,db_handle, event_id)

isc_cancel_events(status_vector,db_handle,event_id)

36 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

Proxy Account Support

On all InterBase V3.1 platforms when you use TCP/IP to connect to a remote database,
you attach to the database via a remote server (gds_inet_server). The remote server
uses either your current user name or a proxy account name that exists in a proxy file
on that machine. The proxy file (/etc/gds_praxy on UNIX or sys$manager:
gds_praxy.dat on VMS) associates remote node names and user names with host
account names. To allow remote access, you edit the proxy file. The format for the lines
in a proxy file is:

<remote node name>:<remote user name> <host account name>

Proxy file lines cannot have any spaces between the <remote node name> and the
<remote user name>. Each entry must be on a separate line in the proxy file. A wildcard
(*)is allowed in place of the remote node names and/or the remote user names in the
proxy file.

The order in which you list entries in the proxy file is important because the proxy file
is scanned until a match is found. If a wildcard match occurs before an exact match,
the wildcard match is used. For this reason you should place wildcard entries at the
end of the proxy file. If a line in your proxy file has a wildcard for both the remote node
name and the remote user name, all unmatched users will default to the account name
associated with that line. For example, if you have this line in your proxy file:

* ¢ * guest

any username that has not been matched by a previous line in the proxy file will be
logged into the machine as “guest.” An existing username account is used only if that
username is matched neither exactly nor with a wildcard in the proxy file.

How Proxy Files are Used in Remote Logins

When a remote node connects to and requests a database on another node, the remote
node name is validated. Then, to validate the remote user name, the proxy file is
scanned for a matching node/user name. If a match is found in the file, the remote node/
user name is mapped to the host account name in the file. If no match is found in the
proxy file, the remote user name is used as an account name. Then the account name
is validated to assure that it exists on the host machine. Once the node and account
names are validated and the database file permissions checked, the database file is
opened and attached. You should note that when the multi-client inet server opens the
database for the first user, subsequent attachments by other users to that database do
not recheck the database file permissions.

November 1992 37

InterBase Versions 3.0 to 3.2 Release Notes

Array Processing Using get_slice and put_slice

With two new GDML statements, get_slice and put_slice, you can retrieve and write
an entire array or a selected portion of an array. You must know the array indexes of
the items you want to process, and the array to which you write must be large enough
to hold the data.

Get_slice, which is used within a for loop, retrieves data from an existing database
array and writes it to your target array. Its format is:

GET_SLICE <context variable>.<array-field-name> [target-
dimensions) INTO <target_array>

Put_slice, which is used as part of a for loop that modifies or stores data, retrieves
data from your target array and writes it to an array field in your database. Its format
1s:
PUT_SLICE <context variable>.<array-field-name- [target-
dimensions) FRCM -target-array-

With either get_slice or put_slice, you must use a context variable to identify the field
you are retrieving or writing.

The separator between the upper and lower bounds of a range in a get_slice or
put_slice statement is a colon (:) rather than two periods. For example, to specify the
range 1..5, you use 1:5. Array ranges in host language statements should use the host
language range format.

If the array dimensions in a get_slice or put_slice statement exactly match the di-

mensions of the database array, the entire array is retrieved or written. To retrieve a
single element, you specify single values for each dimension. To retrieve one column or
row, you specify one dimension as a range and the other dimension(s) as single values.
To retrieve a “rectangular” portion of the array, you would specify, for two or more di-
mensions, dimension ranges that are smaller than the full dimensions of the target ar-
ray. For example, if you have the following array, which has the dimensions [1..6, 1..3]:

1 2 3 &4 5 ¢
l X X X X X X
2 X X X X X X
3 x xXx X X X X

and you wanted to retrieve the underlined values, you would specify [2:5, 2:3] as the
dimensions in the get_slice. (This column-major order, [1..6, 1..3] and [2:5, 2:3], ap-

38 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

plies to FORTRAN. All other languages use row-major order, which, in this case, would
be [1..3, 1..6] and [2:3, 2:5].)

The following is a sample Pascal program that uses get_slice and put_slice:

program array_store (input, output) ;
database db = filename ‘array.gdb’;

the array.gdb file contains the following information:
define database *“array.gdb”
page_size 1024;
define field S short(10,2,3);
define relatiorn TEST_RELATION
S position 0,

ar

1, 3, k : integer;

target_array : array [1..5, 1..2, 1..2) of integer;
begin
sady;

(* store a whole
store X in tes
for i := 1
fer 5 :=
fer k :=

ra
atior. using

= 1+37Kk;
end_store;

look at the whole array as seen irn the db *;
X 1n test_relation
cr I := 1 to 10 do
fecr 3 := 1 to 2 do
for k := 1 to 3 do
writeln (“s{', i, ',', 3, *,", k, "]=', x.s[1,3,k]);

(-
for

s
<

end_for;
(* copy a piece of the array into user defined array *)
for x in test_relation

get_slice x.s [1:5, 1:2, 1:3] into target_array;
end_for;

(* display the user’s array, then change the contents *)

November 1992 39

InterBase Versions 3.0 to 3.2 Release Notes

for 1 := 1 to 5 do
for j := 1 to 2 do
for k := 1 to 3 do
begin
writeln (‘test{’, i, ',', 3. '.', k, "}=",

target_array([i,J,k]);
target_array(i,j, k] :=
end;

100 * 1 + 10 * 3§ + k;

(* use put_slice to change part of the database array *)
for x in test_relation modify x using
put_slice x.s [3:5, 1:2, 1:3) from targst_array;

end_modify;

ernd_£fcor;
(* ses whart that did tco the arra, in the database *
for x in test_relation
fer 1 := 1 tc 1C do
for 3 := 1 to 2 do

fcr k := 1 to 2 do

writeln «('s{’, i, ', ', 3., ', . k.,)=, x.sii 2 KD
end_fcr;
commit
finish;
er.d.

Array Elements in Database Queries

Version 3.1 gli allows you to reference array elements in database queries and RSEs.
You can use qli keywords, such as print, list, select, where, and with, to reference
array elements. You cannot store or modify array elements in qli.

For example, to list the values of the [1,2,1] array element for each record in the
ARRFIELD field of relation TEST, you would use this query in qli:

for test list arrfield[1l,2,1])

To select and print array values that are equal to “2”, you would use:

for test with arrfield(1l,2,1]=2 print arrfield(1,2,1]

40 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

User Defined Functions for Blobs and Arrays

In Version 3.1 you can create UDF's (user defined functions) to which you can pass
blobs and/or arrays and from which blobs can be returned. These UDF's are defined like
all other UDF's (see Chapter 9 of the Data Definition Gu ide), except that you pass a blob
by reference to a blob UDF structure, and you pass an array by reference to a scalar-
array-descriptor, which will be defined in the Array UDFs section below.

A pointer to a structure, not the actual blob or array data, is passed to the UDF. The
UDF does not open or close the blob, but invokes those functions from the control struc-
ture. The structure, which differs for blobs and arrays, is described as used in the C
language, in the sections below.

Blob UDFs

When a blob is passed by reference, the structure to which it points is:

typedef struct bklob {

short (*blcb_get_segment: (i
int *blob_handle;

long blob_numkber_ssgmsants
long lob_max_segment

leng bElck_total_length
veid {*blck_put_segment: () ;

}i:

The above typedef declaration must be included in all blob UDFs. The fields in the blob
typedef structure are:

* blob_get_segment: Pointer to a function that is invoked to read a segment from
the blob (if the blob is being passed to the UDF). As arguments, this function takes
the blob handle, the address of a buffer into which to place the data, the size of that
buffer, and the address of the variable into which the size of the actually read data
is placed.

* blob_handle: The handle of the blob (whether the blob is passed to the UDF or re-
turned from the UDF).

* blob_number_segments: The total number of segments in the blob (if the blob is
being passed to the UDF).

* blob_max_segment: The size of the largest segment in the blob (if the blob is be-
ing passed to the UDF),

November 1992 41

InterBase Versions 3.0 to 3.2 Release Notes

blob_total_length: The total size of the blob (if the blob is being passed to the
UDF).

blob_put_segment: Pointer to a function to be invoked to write a segment to the
blob (if the blob is being returned from the UDF). As arguments, this function takes
the blob handle, the address of a buffer containing the data to be written, and the
length of the data.

NOTE
A UDF that returns a blob is not written as a function. Instead of re-
turning the structure describing the output blob, that structure is

passed in as the m'™ +1 parameter, where m is the number of parame-
ters declared for the function.

The following example is a UDF that takes two blobs as input and returns one new
blob, which is a concatenation of the two input blobs:

42

Functior definiticn -- how you defines this UDF in gdsf
define furcticn blck_concaternat

entry_point 'kleckb_concatsrn

iy

blok by reference,
kleb by reference,
blob by reference return_argument;

* Plok passing structure *;
typedef struct blob (

short (*blok_get_segment! (1 ;

int *blob_handle;

long blob_number_segments;

leng blob_max_segment;

long blob_total_length;

void (*blob_put_segment) () ;
} *BLOB;

extern char *gds_Salloc();
#define MAX(a, b) (a > b) 2 a : b

#define DELIMITER “-----=-====--==-=-----=----------------=-= .

/* NOTE: Although the function is defined to return a blob
by reference, you always write the function with the last
argument being the blob you wish to return */

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

blob_concatenate (froml, from2, to)
BLOB froml, from2, to;

(

char *buffer;

short length, b_length;

b_length = MAY (froml->blob_max_segment, from2-
>blob_max_segment) ;

+* use gds_S$Salloc to allocate memory for the buffer */
buffer = gds_S%alloc (b_length) ;

* write the first blcocb Into the returr blob *.
while f"froml~>blcb_get_segment)(froml-»blot_handle. buff=r,
b_lengtk, &lengthi:
1Yte->blob_put_segment! (tc--.klck_handle, tuffer, lerngth:;

Y now write the delimiter line *-
i*te-.bleb_put_segment) ito- . lok_hardle, DELIMITER, sizecft
CELIMITER - 1
* and finally, write the seccnd blor *
—_get_segment) (from2- -klob_handle, buffer,

while ((*from2--klob_get se
b_length, &lengt
i*tc->blob_put_segmernt:
* use gds_Sfree to release the a.
gds_Sfree ‘buffer:;
)

Array UDFs

Arrays can be passed to a UDF, but they cannot be returned from a UDF. Arrays
passed to UDFs are multidimensional arrays of a uniform, scalar data type. When a
array is passed, the control structure to which it points is:

typedef struct sad {

char dsc_dtype;

char dsc_scale;
short dsc_length;
long *dsc_address;
long dsc_dimensions;

struct dsc_repeat

November 1992 43

InterBase Versions 3.0 to 3.2 Release Notes

(

long dsc_lower;
long dsc_upper;
Jdsc_rpt [1];

The above typedef declaration must be included in all Array UDFs.

The fields in the array typedef structure are:

dsc_dtype: A type code that indicates the type of data in the array. Valid types and
their associated codes are:

type text
type cstring
type varying
type short
type long
type quad
type real
type double
type date
type blob
type d_float 12

O 00 3D OV W+

—
o

dsc_scale: If the dsc_dtype is a short or long integer, dsc_scale, which may be 0,
must also be supplied.

dsc_length: The length of a single element of the array.
dsc_address: The pointer to the actual array data.
dsc_dimensions: The number of dimensions in the array.

dsc_upper/dsc_lower: The upper and lower dimension limits for each dimension.

An example of an array UDF which returns the numeric average of the values in an
array is:

44

Function definition -- how you define this UDF in gdef
define function long_array_average

module_name 'FUNCLIB'

entry_point “long_array_average”

long by scalar_array_descriptor,

long by value return_value;
define relation r

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

number short,
array long (10, 2),
long_average long computed by (long_array_average (array)) ;

typedef struct sad (

char dsc_dtype;
char dsc_scale;
short dsc_length;
long *dsc_acdress;
long dsc_dimensions;
struct dsc_repesat
(
leng dsc_lcower;
leng dsc_ugger;
) dsc_rpt [1];
*D3C;
1o0ng long_arvay_averags (desc
LsC desc;;
{
lcong n, total, avg, *ptr, *=nd;
n = elements i(desc:;

t
for (ptr = desc-.dsc_address, =nd = FtY + n; pty - end; ptres
rtal += *ptr;

long count, 1i;

struct dsc_repeat *tail, *end;
count = 1;

1= 0;

for (tail = desc->dsc_rpt, end = tail + desc->dsc_dimensions;
tail < end; tail++)
count *= tail->dsc_upper - tail->dsc_lower + 1;
return count;

)

November.1992 45

InterBase Versions 3.0 to 3.2 Release Notes

Support for D_FLOAT Format

In the VAX/VMS environment, D_FLOAT double-precision data from a user
application can be stored in an InterBase database in G_FLOAT format. A D_FLOAT
flag (d_float) within gpre, specified at program compile time, determines how double-
precision data will be passed between a user’s application and an InterBase database.
If the D_FLOAT flag is specified, then double-precision data passed from the user’s
application will be assumed to be in D_FLOAT format and stored within an InterBase
database in G_FLOAT format. Data comparisons within a database will be performed
in G_FLOAT format. Data returned to the user’s application from an InterBase
database will be returned in D_FLOAT format.

Support for HP-UX Cluster Configuration

InterBase Version 3.1 supports HP9000/300 cluster configurations. It recognizes
cnodes and coordinates database access through the server (root node).

ALSYS ADA Support

In InterBase, V3.1C support for ALSYS Version 5.1.1 on Apollo SR10 will be updated
to support Version 5.2, where an integer is defined as 32 bits instead of the previous
16-bit definition.

Apollo C++ Support

InterBase provides support on Apollo for the Apollo-provided C++. Apollo C++ input
files with embedded GDML or SQL should have file extension “exx”. The output file

produced by gpre when you preprocess your file will have the extension “cxx”. If you
use the gpre option -cxx, the input file extensions are not required.

46 ’ November 1992

InterBase Versions 3.0 to 3.2 Release Notes

V3.1 Bug Fixes

NIST SQL Compliance Bug Fixes

1016 Arithmetic expressions that contain aggregate functions now parse correctly.
1018 (same as 1016 above).

1502 Comparison subquery that selects no records now executes correctly.

1517 Nested group by with having now works correctly.

1518 Precedence of unary negation operator has been corrected.

1541 Cursor now must be successfully closed before executing open cursor
command.

1542 (same as 1541 above).
1544 union all - optional word all now accepted.

General Bug Fixes

384 Expressions now can be listed (qli).

415 Expression with global aggregates can now be selected (qli.

416 (same as 415 above).

832 select * group by now works correctly (gli).

837 ADA exception can test for EOF error with ‘end-error’ condition.

957 SQL fetch after close cursor now returns an error.

1532 PL/1 based is no longer assumed to be based on.

1595 SQL insert from sub-query containing distinct now works correctly (qli).
1691 (same as 832 above).

2864 (same a 415 above).

2891 Optional word ALL as argument to aggregate function is now accepted.
2898 Yacc/Lex symbols now not visible to user programs.

2930 (same as 832 above).

2936 (same as 832 above).

2977 Number of relations that can be joined has been increased.

3002 gcsu and gds_cserver now accept slashes (/) on switches (VMS).

3009 Defined query headers now used for list.

3010 Remote DECnet events now working correctly.

3040 Maximum size of DSQL query has been increased.

3047 Sun NFS now correctly checks for local/remote directories.

November 1992 47

InterBase Versions 3.0 to 3.2 Release Notes

3059

3061
3062
3097
3102
3104
3106
3107
3112
3115

3127

3131
3146
3151

3225
3250

gfix -s now works correctly for databases with filenames of less than 5
characters.

gpre now generates valid PL/1 code when run with the /raw switch.
External files ok under V2.5 now work under V3.n (VMS).

qli now accepts <> as comparison operator.

Wollongong error messages have improved (VMS).

Indexes with missing information are reported during gbak.

gbak -1 now rolls back limbo transactions when backup is restored.
gbak -y or /y works correctly, but must be used with an argument.
DEChet - excessive use of NCP links corrected.

at end/end-fetch clause now generates code that works correctly in
COBOL.

Descending multi-key indexes used in partial key search now retrieve all
values .

New Ethernet controller (NEO) now is supported for MIPS Ultrix.
blp_prot_mask now returns the Protect bit.

Retrieving based on partial retrieval in multiple multi-segment indexes
does not cause an access violation (VMS).

Retrievals from an indexed field return null records after non-null records.
gfix 1-sweep and sweep dpb attach parameter correctly garbage-collect.

e On some V3.1B platforms, iscinstall will not allow you to enter a non-default
Ethernet ID. If you use the default ID by pressing RETURN, it will accept the de-
fault ID. If you are registering a node other than the current node (for example, a
diskless client), then you should manually enter into isc_license.dat, the registra-
tion information provided by InterBase Technical Support using a text editor.

e Support for gds.authorize will end with InterBase Version 3.2.

48

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

VERSION 3.0 RELEASE NOTES

Overview

This document:

Lists new features for InterBase Version 3.0

Describes Version 2.n to Version 3.0 compatibility issues

Explains changes in component behavior from Version 2.n to Version 3.0
Describes omissions and corrections to the Version 3.0 documentation set

Describes software restrictions and suggested workarounds when available

WARNING

If you are running InterBase on SunOS 3 or SunOS 4, have databases
created with a previous version of InterBase, and used gds_b.a to stat-
ically link to your application (-lgds_b), you must relink after you in-
stall Version 3.0. Databases may be corrupted if you do not
relink. If you originally linked using the dynamic library (-1gdslib; or
the pipe server (-1gds) you do not need to relink.

If you are using a SunOS 3/470, contact your sales representative before attempting to
install InterBase.

Version 3.0 Features

The following features are new in Version 3.0:

Multi-client TCP server

Multi-threaded Apollo mailbox server

UNIX journaling

Central server

Database shadowing

Automatic multi-database transaction recovery
Multiple triggers per relation

User-defined functions

Multi-dimensional arrays

November 1892 49

InterBase Versions 3.0 to 3.2 Release Notes

50

Event alerters

Blob filters

SQL metadata support in qli and DSQL
SQL grant/revoke security statements
New qli statements:

— show filter

— show filters

— show function

— show functions

pyxis enhancements, such as support for dynamic menus
GDML enhancements:

— commit command/commit statement
— case-insensitive sort capability

— matching using condition
Performance improvements

New platform support for:

— HP 9000 Series 800

— HP 9000 Series 300

— HP 3000 running MPE XL

— Ultrix DECstations and DECsystems
— SCO Xenix

— SCO UNIX

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

Version 2.n to Version 3.0 Compatibility

The following sections describe compatibility issues to consider if you plan to run data-
bases created using InterBase Version 2.5 (or earlier) with Version 3.0.

Changes to the On Disk Structure

The On Disk Structure (ODS) is significantly revised in Version 3.0 and now supports
more complex functions and provides better performance. InterBase Version 3.0 is
compatible with and can access both the Version 2.n ODS (ODS version 4) and the Ver-
sion 3.0 ODS (ODS version 6). To run a Version 2.n database with Version 3.0, you use
the bridge, which is described below. To use the new Version 3.0 functions, you must
run the Version 3.0 gbak command to back up and restore your existing database(s).

NOTE

If you are a VAX Ultrix or HP9000 Series 800 user, you must back up
all Version 2.n databases using Version 2.n gbak before installing the
new version of InterBase or you will not be able to access those data-
bases.

If you are an HP9000 Series 300 or 600. or DECstation 2100, 3100, or
5000 Series user and have a beta copy of Version 3.0 installed on your
system, you must back up all Version 3.0 databases using the Version
3.0 beta gbak before installing a new copy of Version 3.0 or you will not
be able to access those databases.

The Bridge between Version 3.0 and Version 2.n

You can access a Version 2.n database through Version 3.0 with a modified copy of the
Version 2.5 access method called the bridge. The bridge is not available for the HP 9000
Serie< 300, 600 or 800, the HP 3000, or for any system running VAX Ultrix. (This
section uses gli to describe access to the bridge through Version 3.0.)

If you define a database using Version 3.0, the database is a Version 3.0 ODS 6
database. For example, the following qli statements show version information for a
local Version 3.0 database (mydata.gdb), and a remote database (v3_ods6.gdb):

(1fgde)”
InterBase/apollo (remote server), version “AX-V3.O0F mbx
(fecb) "QLI> show version
QLI, version *“AX-V3.0F"
QLI> define database mydata.gdb

November 1992 51

InterBase Versions 3.0 to 3.2 Release Notes

QLI> show version
QLI, version “AX-V3.0F”
Version(s) for database “mydata.gdb”
InterBase/apollo (access method), version “AX-V3.0C"

QLI> finish
QLI> ready v3_odsé.gdb
QLI> show version
QLI, version *“AX-V3.0F”
Version(s) for database *“v3_odsé.gdb”
InterBase ‘apcllo (access method!, version “AX-V2.0F mbx

You can access Version 2.n and Version 3.0 databases through the bridge on Version
3.0. You cannot access a Version 3.0 database directly through Version 2.n, but you can
access a Version 3.0 database remotely (so that your Version 2.n remote interface is ac-
cessing the Version 3.0 remote server). If you access a Version 3.0 database through
Version 2.n, InterBase returns the following message:

CLI> show wversion

QLI> version “AX-V2.5B”

QLI> ready v3_ods5.gdb

+ 0Ll error from database v~3_odséb.gdb” *

unsupperted on disk structure for file v3_cdsé.gdk; found 0,
support 4

The found ODS number, 0, as shown in the message above, is incorrect. Although you
have reached an ODS 6 database, the Version 2.n access method does not recognize it
as an identifiable ODS. The support number, 4, which is the ODS for Version 2.n, is
reported correctly by qli.

If you try to use Version 3.0 functions with a Version 2.n database, you may receive
messages of the form:

database version is too old for <new functionality>: use GBAK
first

or

database version is too old for new syntax:
<syntax/functionality>

Use gbak to backup and restore your database to ODS 6 if possible. This process is de-
scribed in the Version 3.0 installation notes.

52 . November 1992

InterBase Versions 3.0 to 3.2 Release Notes

The Apollo Bridge

On the Apollo, the bridge is an image in the directory /interbase/lib. In the following
example, a Version 2.n database is accessed through Version 3.0 and the bridge is iden-
tified as Version 2.5B.

QLI> ready v2_ods4.gdb
QLI> show version
QLI, version “A¥X-V3.0F”
Version(s) for database “v2_ods4.gdb”
InterBase ‘apollo (access method), version “AX-V2.5U"

On an Apollo you may receive the following message:

QLI~ show ver
QLI~ wversicn

3

AX-V2.0F”

QLI> ready v3_odsf.gdb

** QLI errcr from database “v2_odsé.gdk” **

unsuppcrted on disk structure for file v3_ods6.gdk; found 0,
suppert 4

L /]

The above message indicates that your Version 3.0 database is being accessed by a Ver-
sion 2.n gds_server. This may be the result of an aborted installation that left a Ver-
sion 2.n server running on a Version 3.0 node. To resolve this conflict, determine which
node is locking the database by performing these two steps:

1. Kill the gds_server and the gds_guardian on that node.

2. Start a new Version 3.0 gds_server.
If the server is still a Version 2.n server, check that the installation on that node was

not aborted, which might have left a Version 2.n server in the /interbase/com subdi-
rectory.

November 1992 53

InterBase Versions 3.0 to 3.2 Release Notes

The Sun Bridge

On the Sun, the bridge is implemented through the pipe server as gds_pipe in
Jusr/interbase/bin. The bridge is built into the gds_inet_server, so the remote server
can access both Version 2.n and Version 3.0 databases. If you access a Version 2.n da-
tabase through Version 3.0, you see the following message:

QLI> ready v2_ods4.gdb
QLI> show version
QLI, version *S3-V3.0F~
Version(s) for database “v2_odsd.gdb”
InterBase ‘sun (access method), version *“S3-V2.5U"
InterBase/sur (pipe interface), version “S3-V3.0F”

The VMS Bridge

On VMS, the bridge is implemented through a second shareable library, gdsshr.exe,
which appears as shown below. Both the DECnet and inet servers use the bridge, so
they can access both Version 2.n and Version 3.0 databases.

QLI> ready v2_ods4.gdb
QLI> show version
QLI, version “WVM-V2.0F.Z.0F”
Version(s) for database “v2_ods4.gdk”
InterBase’/vms (access method), version “VM-V2.5U"

Bridge Restrictions

You cannot update the metadata on any platform for a Version 2.n database through
the bridge. Switch to Version 2.n if you want to change the metadata for a Version 2.n
database, or use gbak to backup and restore your databases to Version 3.0.

54 November 1992

InterBase Versions 3.0 to 3.2 Release Notes

Changes to InterBase Components

The following section describes changes to features from InterBase Version 2.n to Ver-
sion 3.0.

Changes to qli

* Using the show relations or show procedures statements in qli may produce a
slightly different display than in Version 2.n. The display is formatted in multicol-
umns based on:

— The value supplied for the set columns command in your qli start-up file.

— The default column width. (On Apollos, the default column width corresponds
to the current window width.)

* Ifyou use an unsigned edit string to retrieve a negative number in qli, you now get
a data overflow. In Version 2.n, InterBase returned the absolute value of the num-
ber.

To retrieve the absolute value of a number, use the ABS user-defined function,
included in the /usr/interbase/examples directory. For example:

QLI print absi(-3);
3

QLI> declare foo double;
QLI> foo = -3;
QLI> print aksifoo);

3

Changes to Forms

Field editing in fred is different in this release. If you are in a form, pressing the Tab
key places the cursor on the next field, rather than the next editable field.

Two form modification modes are available: navigation mode and edit mode. You use
navigation mode to move from field to field; you use edit mode to change modifiable
fields. fred always starts in navigation mode, where you can use the arrow keys, Re-
turn key, Tab key, or Delete key to move from field to field. To shift into edit mode,
move the cursor to a modifiable field and press the key that corresponds to Edit, Insert-
Overstrike, Erase, or Insert (see the list below). To return to navigation mode, either
press the Edit key or press any key that is not a field editing key (i.e., arrow, Tab, Re-
turn, or a function key).

November 1992 55

InterBase Versions 3.0 to 3.2 Release Notes

NOTE

If you are using an HP machine and you are not using VT 100 emulation

mode, you must use the HOME key instead of the ENTER key.

¥
FUNCTION DESCRIPTION Ko | e
Edit Toggles between edit mode and EDIT Ctrl-G
navigation mode
Right Moves cursor one character to right Right Arrow Right Arrow
Left Moves cursor one character to left Left Arrow Left Arrow
i Delete Deletes character to left of cursor BACKSPACE Delete
Delete-Next | Deletes current character CHAR DEL Ctrl-F
'Go-To-Start | Moves cursor to first position of field Left Bar Arrow | Ctrl-H
irCo-To-End 'Moves cursor to last position of field Right Bar Arrow | Ctrl-E
:Tnsert- Toggles between insert and overstrike | INS Ctrl-A
Overstrike | modes
Erase Deletes contents of entire field LINE DEL Ctrl-U
Insert Inserts any printable character into field | Any character | Any character |

*Forms are

not available on the HP 3000.

Using the Mouse

For Apollo workstations, you can use the mouse to navigate in forms and menus. The
left mouse button corresponds to the ENTER key and the right button corresponds to
the RETURN key. For horizontal and vertical menus, moving the mouse moves the

menu cursor to the next or prior menu choice. You can also use the mouse to move the
cursor among and within fields on a form.

56

November 1882

InterBase Versions 3.0 to 3.2 Release Notes

Changes to SQL

The way in which SQL indicator variables work has changed:

If the SQL indicator variable contains a negative number, the value of the associ-
ated field is presumed missing.

If the variable contains 0 or a number greater than 0, the value of the associated
field is presumed present.

Changes to DSQL

DSQL may report errors that more input parameters are required for a command
than the given SQLDA can provide. Previously, you set SQLN to the number of
variables the SQLDA allows, and set the SQLD to the number of variables used.
Previous releases of InterBase did not check SQLD, which resulted in access viola-
tions if users tried to access a variable that was not set up.

Version 3.0 checks the variable number set by SQLD and returns an error if it tries
to access a higher variable number. If you have to run a program that does not set
the SQLD in the input SQLDA, you must change the code to adhere to this
requirement.

For ADA, the declaration and use of SQLDA structures have changed in Version
3.0. See Chapter 4 of the DSQL Programmer’s Guide for information.

DSQL data types and the constants used to produce them have changed in Version
3.0. Two new constants, SQL_FLOAT and SQL_FLOAT + 1, produce 4-byte fields
of data type float.

If you have programs set up to retrieve float type data as double, DSQL now
returns the data as float. You can do either of the following:

— Adjust the program to accept float data.

— Reset the SQLDA to indicate a data type of SQL_DOUBLE instead of
SQL_FLOAT. You must reset the SQLDA after you issue a prepare or
describe statement

The DSQL indicator variable, SQLIND, now works as follows:
— If DSQL_IND is a negative number, the value of the associated field is missing.

— If DSQL_IND is equal to or greater than 0, the value of the associated field is
present.

Novembar 1992 57

InterBase Versions 3.0 to 3.2 Release Notes

58 ' November 1992

Index

A
Abort codes for triggers 34
Absolute value 55
ACL filter 7
ADA
kernel errors 35
SQLDA structures 57
support 18
ADA support, Apollo 35
ALSYS, ADA support 46
Apollo
ADA support 35
bridge 53
C++ support 46
default column width 55
deleting a view 34
field editing keys 56
gds_guardian 53
gds_server 53
lock table size 13, 14
using the mouse 56
Array
dynamic access to 23
get_slice 38
processing 38
put_slice 38
UDF 43
UDF control structure 43

UDF sample C program 44

B

Backing up
beta software 51
databases 51

Blob
blob_get_segment 41
blob_handle 41
blob_put_segment 42
sample C program 42
UDF control structure 41
UDF parameter limit 21

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

Bridge
access method 51
on Apollo 53
on Sun 54
on VMS 54
restrictions 54
Bug Fixes 6, 15, 47

C
C language
pause function 35
sample array UDF program 44
sample blob UDF program 42
C++ 18
Apollo support 46
gdef 7
Cache size
default 19
specifying 19
Cluster configuration, on HP9000/300 46
Column alias 22
Comparing float and scaled/numeric data
types 34
Computed fields 34
Converting data types 34

D
D_FLOAT data in VMS 46
Data General
platform changes |
pyxis 8, 15
remote events 13
Data types
D_FLOAT 46
float 34
G_FLOAT 46
numeric string 34
scaled integer 34
Database, remote access 52
DECnet server 54
DECstation, gbak S1
DSQL
ADA SQLDA structures 57
column alias 22
data types and constants 57

59

InterBase Versions 3.0 to 3.2 Release Notes

FORTRAN on Apollo 15

grant statement 22

limit 34

SQLDA variables 57

SQLIND indicator variable 57
Dynamic array access 23
Dynamic shared libraries 1

E
erase 4
Error handling in SQL 21
Events
on Data General 13
on HP-UX 13
on Ultrix 34
on VMS 34

F
Factor switch of gbak 20
Float data type 57
Floating point numbers 26
Forms
field editing on the HP 56
modifying forms S5
moving between fields 55
Forms changes
Apollo field editing keys 56
field editing keys 56
FORTRAN ! delimiter 20
fred, see Forms

G
gbak
backing up version 2.n 51
on DECstations 51
on HP9000 51
on VAX Ultrix 51
tape blocking factor switch 20
using to restore to ODS 6 52
gdef
compound index limits 13
in DYN C++ 7
set generator 20
UDF parameter limit 21
gds.authorize 48

60

gds_$, changed to isc_36
gds_$dsql_finish 34
gds_b.a 49
gds_guardian on Apollo 53
gds_inet_server on Sun 54
gds_server on Apollo 53
gdsshr.exe on VMS 54
Generator, setting initial value 20
get_slice
in sample Pascal program 39
range separator in 38
gpre
ADA programs 9
Cache size 19
D_FLOAT/ G_FLOAT data flags 46
FORTRAN comments 20
ready 19
grant, update privilege 22

H
HP9000
bridge S1
field editing 56
gbak 51
HP9000/300, 400 5
HP9000/300, cluster configurations 46

I

IBM RS6000 4

Indicator variables 57
Interbase Ada, gpre 9
isc_, defined 36
isc_array_<xxx> 23-25
isc_attach_database 19
isc_detach_database 26
isc_get_segment 12
isc_print_sqlerr 21
isc_print_status 22
isc_put_segment 12
isc_sql_interprete 22
iscinstall, restrictions 48

L
Language support
ADA 18

November 1992

C++ 18
Limbo transactions 26
Lock table expansion 8

M
Metadata, updating 54
Mouse, using on Apollo 56

N

Negative number retrieval 55

(0]
On disk structure (ODS) 51

P
Parameters in UDFs 21
Pascal sample array program 39
Pipe Server
on Data General |
on Sun 54
Privileges for SQL security 22
Proxy Accounts, proxy file format 37
put_slice 38
in sample Pascal program 39
range separator in 38
pyxis
on Data General 2, &, 15
on SGI 8

Q
qli
absolute value 55
aggregates 13
negative number retrieval 55
show procedures 55
show relations 55

R

ready, specifying cache size 19
Remote database access 52
Remote Events, see Events
Remote logins 37

reserving 20

November 1992

InterBase Versions 3.0 to 3.2 Release Notes

S
Set generator 20
SGI, pyxis 8
Shareable library on VMS 54
show procedures 55
show relations 55
sorted by 4
SQL
error handling 21
indicator variable 57
security insert privilege 22
security update privilege 22
SQLDA variables 57
SQLIND indicator variable 57
start_transaction 20
Sun
bridge 54
gds_inet_server 54
lock table name 13
lock table size 13, 14
pipe server (gds_a) 35
pipe server (gds_pipe; 54
relinking applications 49

T
Tape blocking factor 20
Transaction

limit 26

using clause 20
Triggers

abort codes 34

on views |

U

UDF, see User Defined Function

Update privilege 22

User Defined Function
argument limit 13
for arrays, see Array UDF
for blobs, see Blob UDF
module names for 4
nested 3
on SGI 4
parameter limit 21

using clause 20

61

InterBase Versions 3.0 to 3.2 Release Notes

\'%
VAX Ultrix
bridge S1
gbak 51
NFS patch 35
Version compatibility 51
VMS
bridge 54
D_FLOAT data 46
G_FLOAT data 46
gds_$dsql_finish call 34
gdsshr.exe 54
journaling 1
shareable library 54

62 November 1992

INTERBASE

BORLAND

CORPORATE HEADQUARTERS: BORLAND INTERNATIONAL INC., 1800 GREEN HILLS
ROAD, P. 0. BOX 660001, SCOTTS VALLEY, CA 95067-0001, (408) 438-5300. OFFICES IN:
AUSTRALIA, DENMARK, FRANCE, GERMANY, ITALY, JAPAN, NEW ZEALAND,
SINGAPORE, SWEDEN, TAIWAN, AND UNITED KINGDOM. PART # INTO033WW21690

